供应链中的大数据主要包括以下四种类型:结构数据、非结构数据、传感器数据、新类型数据。
1、结构数据是指那些在电子表格或是关系型数据库中储存的数据,这一类型的数据只占数据总量的5%左右,主要包括交易数据和时间段数据。
2、非结构数据主要包括库存数据、社会化数据、渠道数据以及客户服务数据。尽管现在有大量的研究和报告在探讨数据和分析能力对供应链管理的重要性,但对于非结构数据,例如社会化数据对供应链的影响和作用的研究却相对缺乏。
3、传感数据主要包括RFID数据、温度数据、QR码以及位置数据,这类数据增长很快,并能为供应链金融带来巨大商机。
4、新类型数据主要有地图数据、视频数据、影像数据以及声音数据等,这类数据多用于可视化领域,并能够帮助提高数据质量,使数据的实时性更强、提高了数据分析的精准度。
供应链数据(Supply chain)是指生产及流通过程中,涉及将产品或服务提供给最终用户活动的上游与下游企业所形成的网链结构,是指围绕核心企业,从配套零件开始,制成中间产品以及最终产品,最后由销售网络把产品送到消费者手中的,将供应商、制造商、分销商直到最终用户连成一个整体的功能网链结构。
通信大数据行程卡是通过手机所处的基站位置获取的。“通信大数据行程卡”分析的是手机信令数据,通过用户手机所处的基站位置获取,信令数据的采集、传输和处理过程高度自动化,且有极其严苛的安全隐私保护机制,具有很高的真实性和准确度。
STP分析即市场细分(Segmenting)、选择目标市场(Targeting)和产品定位(Positioning) STP法则是整个营销建设的基础,STP法则对各自的市场进行了细分,并选择了自己的目标市场,传达出各自不同的定位。
STP分析的实践步骤
选定产品市场范围。公司应明确自己在某行业中的产品市场范围,并以此作为制定市场开拓战略的依据。
列举潜在顾客的需求。可从地理、人口、心理等方面列出影响产品市场需求和顾客购买行为的各项变数。
分析潜在顾客的不同需求。公司应对不同的潜在顾客进行抽样调查,并对所列出的需求变数进行评价,了解顾客的共同需求。
制定相应的营销策略。调查、分析、评估各细分市场,最终确定可进入的细分市场,并制定相应的营销策略。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.wito.com.cn/post/2604.html